Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.252
Filter
1.
Sci Rep ; 14(1): 10039, 2024 05 02.
Article in English | MEDLINE | ID: mdl-38693166

ABSTRACT

According to the World Health Organization, Chagas disease (CD) is the most prevalent poverty-promoting neglected tropical disease. Alarmingly, climate change is accelerating the geographical spreading of CD causative parasite, Trypanosoma cruzi, which additionally increases infection rates. Still, CD treatment remains challenging due to a lack of safe and efficient drugs. In this work, we analyze the viability of T. cruzi Akt-like kinase (TcAkt) as drug target against CD including primary structural and functional information about a parasitic Akt protein. Nuclear Magnetic Resonance derived information in combination with Molecular Dynamics simulations offer detailed insights into structural properties of the pleckstrin homology (PH) domain of TcAkt and its binding to phosphatidylinositol phosphate ligands (PIP). Experimental data combined with Alpha Fold proposes a model for the mechanism of action of TcAkt involving a PIP-induced disruption of the intramolecular interface between the kinase and the PH domain resulting in an open conformation enabling TcAkt kinase activity. Further docking experiments reveal that TcAkt is recognized by human inhibitors PIT-1 and capivasertib, and TcAkt inhibition by UBMC-4 and UBMC-6 is achieved via binding to TcAkt kinase domain. Our in-depth structural analysis of TcAkt reveals potential sites for drug development against CD, located at activity essential regions.


Subject(s)
Chagas Disease , Molecular Docking Simulation , Molecular Dynamics Simulation , Trypanosoma cruzi , Trypanosoma cruzi/enzymology , Trypanosoma cruzi/drug effects , Chagas Disease/drug therapy , Chagas Disease/parasitology , Humans , Proto-Oncogene Proteins c-akt/metabolism , Protozoan Proteins/metabolism , Protozoan Proteins/chemistry , Protozoan Proteins/antagonists & inhibitors , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/chemistry , Protein Binding
2.
Circ Res ; 134(10): 1379-1397, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38723031

ABSTRACT

Chagas cardiomyopathy caused by infection with the intracellular parasite Trypanosoma cruzi is the most common and severe expression of human Chagas disease. Heart failure, systemic and pulmonary thromboembolism, arrhythmia, and sudden cardiac death are the principal clinical manifestations of Chagas cardiomyopathy. Ventricular arrhythmias contribute significantly to morbidity and mortality and are the major cause of sudden cardiac death. Significant gaps still exist in the understanding of the pathogenesis mechanisms underlying the arrhythmogenic manifestations of Chagas cardiomyopathy. This article will review the data from experimental studies and translate those findings to draw hypotheses about clinical observations. Human- and animal-based studies at molecular, cellular, tissue, and organ levels suggest 5 main pillars of remodeling caused by the interaction of host and parasite: immunologic, electrical, autonomic, microvascular, and contractile. Integrating these 5 remodeling processes will bring insights into the current knowledge in the field, highlighting some key features for future management of this arrhythmogenic disease.


Subject(s)
Arrhythmias, Cardiac , Chagas Cardiomyopathy , Humans , Animals , Arrhythmias, Cardiac/etiology , Arrhythmias, Cardiac/parasitology , Arrhythmias, Cardiac/physiopathology , Chagas Cardiomyopathy/parasitology , Trypanosoma cruzi/pathogenicity , Chagas Disease/complications , Chagas Disease/parasitology , Chagas Disease/immunology
3.
Mol Biochem Parasitol ; 258: 111618, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38588892

ABSTRACT

Trypanosoma cruzi is a parasite with a high capacity to adapt to the host. Animal models have already demonstrated that the tropism of this parasite occurs not only in cardiac/digestive tissues but also in adipose tissue (AT). That said, the consequences ofT. cruziinfection for AT and the implications of treatment with Benzonidazole in this tissue are under discussion. Here, we tested the hypothesis that T. cruzi infection in adipose tissue upon treatment with Benzonidazole (Bz) and the interaction of mononuclear immune cells (PBMC) influences the relative expression of ACAT1, FASN, and PNPLA2 genes. Thus, stem cells derived from adipose tissue (ADSC) after adipogenic differentiation were indirectly cultivated with PBMC after infection with the T. cruzi Y strain and treatment with Bz. We use the TcSAT-IAM system and RT-qPCR to evaluate the parasite load and the relative quantification (ΔCt) of the ACAT1, FASN, and PNPLA2 genes. Our results demonstrate that treatment with Bz did not reduce adipocyte infection in the presence (p-value: 0.5796) or absence (p-value: 0.1854) of cultivation with PBMC. In addition, even though there is no statistical difference when compared to the control group (AT), T. cruzi induces the FASN expression (Rq: 14.00). However, treatment with Bz in AT suggests the increases of PNPLA2 expression levels (Rq: 12.58), even in the absence of T. cruzi infection. During indirect cultivation with PBMC, T. cruzi smooths the expression of PNPLA2 (Rq: 0.824) and instigates the expression of ACAT1 (Rq: 1.632) and FASN (Rq: 1.394). Furthermore, the treatment with Bz during infection induces PNPLA2 expression (Rq: 1.871), maintaining FASN expression levels (Rq: 1.334). Given this, our results indicate that treatment with Benzonidazole did not decrease T. cruzi infection in adipose tissue. However, treating the adipocyte cells with Bz during the interaction with PBMC cells influences the lipid pathways scenario, inducing lipolytic metabolism through the expression of PNPLA2.


Subject(s)
Acyltransferases , Adipose Tissue , Fatty Acid Synthase, Type I , Leukocytes, Mononuclear , Lipase , Trypanosoma cruzi , Humans , Leukocytes, Mononuclear/immunology , Leukocytes, Mononuclear/parasitology , Adipose Tissue/parasitology , Adipose Tissue/metabolism , Trypanosoma cruzi/drug effects , Trypanosoma cruzi/genetics , Lipase/genetics , Lipase/metabolism , Fatty Acid Synthase, Type I/genetics , Fatty Acid Synthase, Type I/metabolism , Acetyl-CoA C-Acetyltransferase/genetics , Acetyl-CoA C-Acetyltransferase/metabolism , Chagas Disease/drug therapy , Chagas Disease/parasitology , Chagas Disease/genetics , Membrane Proteins/genetics , Membrane Proteins/metabolism , Parasite Load , Gene Expression , Cells, Cultured
4.
PLoS One ; 19(4): e0300021, 2024.
Article in English | MEDLINE | ID: mdl-38635818

ABSTRACT

Trypanosoma cruzi (T. cruzi) is the causative agent of Chagas' disease, a parasitic infection responsible for significant morbidity and mortality in Latin America. The current treatments have many serious drawbacks and new drugs are urgently required. In the UK, T. cruzi is classified by the Advisory Committee on Dangerous Pathogens (ACDP) as a Hazard Group 3 organism and strict safety practices must be adhered to when handling this pathogen in the laboratory. Validated inactivation techniques are required for safe T. cruzi waste disposal and removal from Containment Level 3 (CL3) facilities for storage, transportation and experimental analysis. Here we assess three T. cruzi. inactivation methods. These include three freeze-thaw cycles, chemical inactivation with Virkon disinfectant, and air drying on Whatman FTA cards (A, B, C, Elute) and on a Mitra microsampling device. After each treatment parasite growth was monitored for 4-6 weeks by microscopic examination. Three freeze-thaw cycles were sufficient to inactivate all T. cruzi CLBrener Luc life cycle stages and Silvio x10/7 A1 large epimastigote cell pellets up to two grams wet weight. Virkon treatment for one hour inactivated T. cruzi Silvio x10/7 subclone A1 and CLBrener Luc both in whole blood and cell culture medium when incubated at a final concentration of 2.5% Virkon, or at ≥1% Virkon when in tenfold excess of sample volume. Air drying also inactivated T. cruzi CLBrener Luc spiked blood when dried on FTA A, B or Elute cards for ≥30 minutes and on a Mitra Microsampler for two hours. However, T. cruzi CLBrener Luc were not inactivated on FTA C cards when dried for up to two hours. These experimentally confirmed conditions provide three validated T. cruzi inactivation methods which can be applied to other related ACDP Hazard Group 2-3 kinetoplastid parasites.


Subject(s)
Aminopyridines , Chagas Disease , Sulfuric Acids , Trypanosoma cruzi , Humans , Chagas Disease/parasitology , Peroxides
5.
Front Immunol ; 15: 1342431, 2024.
Article in English | MEDLINE | ID: mdl-38655255

ABSTRACT

Chagas disease, caused by Trypanosoma cruzi, remains a serious public health problem worldwide. The parasite was subdivided into six distinct genetic groups, called "discrete typing units" (DTUs), from TcI to TcVI. Several studies have indicated that the heterogeneity of T. cruzi species directly affects the diversity of clinical manifestations of Chagas disease, control, diagnosis performance, and susceptibility to treatment. Thus, this review aims to describe how T. cruzi genetic diversity influences the biology of the parasite and/or clinical parameters in humans. Regarding the geographic dispersion of T. cruzi, evident differences were observed in the distribution of DTUs in distinct areas. For example, TcII is the main DTU detected in Brazilian patients from the central and southeastern regions, where there are also registers of TcVI as a secondary T. cruzi DTU. An important aspect observed in previous studies is that the genetic variability of T. cruzi can impact parasite infectivity, reproduction, and differentiation in the vectors. It has been proposed that T. cruzi DTU influences the host immune response and affects disease progression. Genetic aspects of the parasite play an important role in determining which host tissues will be infected, thus heavily influencing Chagas disease's pathogenesis. Several teams have investigated the correlation between T. cruzi DTU and the reactivation of Chagas disease. In agreement with these data, it is reasonable to suppose that the immunological condition of the patient, whether or not associated with the reactivation of the T. cruzi infection and the parasite strain, may have an important role in the pathogenesis of Chagas disease. In this context, understanding the genetics of T. cruzi and its biological and clinical implications will provide new knowledge that may contribute to additional strategies in the diagnosis and clinical outcome follow-up of patients with Chagas disease, in addition to the reactivation of immunocompromised patients infected with T. cruzi.


Subject(s)
Chagas Disease , Genetic Variation , Trypanosoma cruzi , Trypanosoma cruzi/genetics , Humans , Chagas Disease/immunology , Chagas Disease/parasitology , Animals , Host-Parasite Interactions/genetics , Host-Parasite Interactions/immunology
6.
Traffic ; 25(4): e12935, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38629580

ABSTRACT

The protozoan parasites Plasmodium falciparum, Leishmania spp. and Trypanosoma cruzi continue to exert a significant toll on the disease landscape of the human population in sub-Saharan Africa and Latin America. Control measures have helped reduce the burden of their respective diseases-malaria, leishmaniasis and Chagas disease-in endemic regions. However, the need for new drugs, innovative vaccination strategies and molecular markers of disease severity and outcomes has emerged because of developing antimicrobial drug resistance, comparatively inadequate or absent vaccines, and a lack of trustworthy markers of morbid outcomes. Extracellular vesicles (EVs) have been widely reported to play a role in the biology and pathogenicity of P. falciparum, Leishmania spp. and T. cruzi ever since they were discovered. EVs are secreted by a yet to be fully understood mechanism in protozoans into the extracellular milieu and carry a cargo of diverse molecules that reflect the originator cell's metabolic state. Although our understanding of the biogenesis and function of EVs continues to deepen, the question of how EVs in P. falciparum, Leishmania spp. and T. cruzi can serve as targets for a translational agenda into clinical and public health interventions is yet to be fully explored. Here, as a consortium of protozoan researchers, we outline a plan for future researchers and pose three questions to direct an EV's translational agenda in P. falciparum, Leishmania spp. and T. cruzi. We opine that in the long term, executing this blueprint will help bridge the current unmet needs of these medically important protozoan diseases in sub-Saharan Africa and Latin America.


Subject(s)
Chagas Disease , Extracellular Vesicles , Leishmania , Parasites , Trypanosoma cruzi , Animals , Humans , Chagas Disease/epidemiology , Chagas Disease/parasitology
7.
CRISPR J ; 7(2): 88-99, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38564197

ABSTRACT

Rhodnius prolixus is currently the model vector of choice for studying Chagas disease transmission, a debilitating disease caused by Trypanosoma cruzi parasites. However, transgenesis and gene editing protocols to advance the field are still lacking. Here, we tested protocols for the maternal delivery of CRISPR-Cas9 (clustered regularly spaced palindromic repeats/Cas-9 associated) elements to developing R. prolixus oocytes and strategies for the identification of insertions and deletions (indels) in target loci of resulting gene-edited generation zero (G0) nymphs. We demonstrate successful gene editing of the eye color markers Rp-scarlet and Rp-white, and the cuticle color marker Rp-yellow, with highest effectiveness obtained using Receptor-Mediated Ovary Transduction of Cargo (ReMOT Control) with the ovary-targeting BtKV ligand. These results provide proof of concepts for generating somatic mutations in R. prolixus and potentially for generating germ line-edited lines in triatomines, laying the foundation for gene editing protocols that could lead to the development of novel control strategies for vectors of Chagas disease.


Subject(s)
Chagas Disease , Rhodnius , Animals , Female , Gene Editing/methods , Rhodnius/genetics , Rhodnius/parasitology , CRISPR-Cas Systems , Insect Vectors/parasitology , Chagas Disease/genetics , Chagas Disease/parasitology
8.
Biomolecules ; 14(4)2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38672424

ABSTRACT

Originally developed as a chemotherapeutic agent, miltefosine (hexadecylphosphocholine) is an inhibitor of phosphatidylcholine synthesis with proven antiparasitic effects. It is the only oral drug approved for the treatment of Leishmaniasis and American Trypanosomiasis (Chagas disease). Although its precise mechanisms are not yet fully understood, miltefosine exhibits broad-spectrum anti-parasitic effects primarily by disrupting the intracellular Ca2+ homeostasis of the parasites while sparing the human hosts. In addition to its inhibitory effects on phosphatidylcholine synthesis and cytochrome c oxidase, miltefosine has been found to affect the unique giant mitochondria and the acidocalcisomes of parasites. Both of these crucial organelles are involved in Ca2+ regulation. Furthermore, miltefosine has the ability to activate a specific parasite Ca2+ channel that responds to sphingosine, which is different to its L-type VGCC human ortholog. Here, we aimed to provide an overview of recent advancements of the anti-parasitic mechanisms of miltefosine. We also explored its multiple molecular targets and investigated how its pleiotropic effects translate into a rational therapeutic approach for patients afflicted by Leishmaniasis and American Trypanosomiasis. Notably, miltefosine's therapeutic effect extends beyond its impact on the parasite to also positively affect the host's immune system. These findings enhance our understanding on its multi-targeted mechanism of action. Overall, this review sheds light on the intricate molecular actions of miltefosine, highlighting its potential as a promising therapeutic option against these debilitating parasitic diseases.


Subject(s)
Calcium , Chagas Disease , Homeostasis , Leishmaniasis , Phosphorylcholine , Phosphorylcholine/analogs & derivatives , Humans , Phosphorylcholine/pharmacology , Phosphorylcholine/therapeutic use , Chagas Disease/drug therapy , Chagas Disease/parasitology , Chagas Disease/metabolism , Calcium/metabolism , Leishmaniasis/drug therapy , Leishmaniasis/metabolism , Leishmaniasis/parasitology , Homeostasis/drug effects , Animals , Antiprotozoal Agents/pharmacology , Antiprotozoal Agents/therapeutic use , Mitochondria/metabolism , Mitochondria/drug effects , Leishmania/drug effects , Leishmania/metabolism , Trypanosoma cruzi/drug effects , Trypanosoma cruzi/metabolism
9.
Int J Mol Sci ; 25(8)2024 Apr 13.
Article in English | MEDLINE | ID: mdl-38673904

ABSTRACT

Chagas disease is one of the world's neglected tropical diseases, caused by the human pathogenic protozoan parasite Trypanosoma cruzi. There is currently a lack of effective and tolerable clinically available therapeutics to treat this life-threatening illness and the discovery of modern alternative options is an urgent matter. T. cruzi glucokinase (TcGlcK) is a potential drug target because its product, d-glucose-6-phosphate, serves as a key metabolite in the pentose phosphate pathway, glycolysis, and gluconeogenesis. In 2019, we identified a novel cluster of TcGlcK inhibitors that also exhibited anti-T. cruzi efficacy called the 3-nitro-2-phenyl-2H-chromene analogues. This was achieved by performing a target-based high-throughput screening (HTS) campaign of 13,040 compounds. The selection criteria were based on first determining which compounds strongly inhibited TcGlcK in a primary screen, followed by establishing on-target confirmed hits from a confirmatory assay. Compounds that exhibited notable in vitro trypanocidal activity over the T. cruzi infective form (trypomastigotes and intracellular amastigotes) co-cultured in NIH-3T3 mammalian host cells, as well as having revealed low NIH-3T3 cytotoxicity, were further considered. Compounds GLK2-003 and GLK2-004 were determined to inhibit TcGlcK quite well with IC50 values of 6.1 µM and 4.8 µM, respectively. Illuminated by these findings, we herein screened a small compound library consisting of thirteen commercially available 3-nitro-2-phenyl-2H-chromene analogues, two of which were GLK2-003 and GLK2-004 (compounds 1 and 9, respectively). Twelve of these compounds had a one-point change from the chemical structure of GLK2-003. The analogues were run through a similar primary screening and confirmatory assay protocol to our previous HTS campaign. Subsequently, three in vitro biological assays were performed where compounds were screened against (a) T. cruzi (Tulahuen strain) infective form co-cultured within NIH-3T3 cells, (b) T. brucei brucei (427 strain) bloodstream form, and (c) NIH-3T3 host cells alone. We report on the TcGlcK inhibitor constant determinations, mode of enzyme inhibition, in vitro antitrypanosomal IC50 determinations, and an assessment of structure-activity relationships. Our results reveal that the 3-nitro-2-phenyl-2H-chromene scaffold holds promise and can be further optimized for both Chagas disease and human African trypanosomiasis early-stage drug discovery research.


Subject(s)
Benzopyrans , Glucokinase , Trypanocidal Agents , Trypanosoma cruzi , Trypanosoma cruzi/drug effects , Trypanosoma cruzi/enzymology , Trypanocidal Agents/pharmacology , Trypanocidal Agents/chemistry , Animals , Mice , Benzopyrans/pharmacology , Benzopyrans/chemistry , Glucokinase/metabolism , Glucokinase/antagonists & inhibitors , High-Throughput Screening Assays , Chagas Disease/drug therapy , Chagas Disease/parasitology , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemistry , NIH 3T3 Cells , Drug Discovery/methods , Humans , Molecular Docking Simulation , Structure-Activity Relationship
10.
FASEB J ; 38(6): e23566, 2024 Mar 31.
Article in English | MEDLINE | ID: mdl-38526868

ABSTRACT

Trypanosoma cruzi is the causative agent of Chagas disease, a chronic pathology that affects the heart and/or digestive system. This parasite invades and multiplies in virtually all nucleated cells, using a variety of host cell receptors for infection. T. cruzi has a gene that encodes an ecotin-like inhibitor of serine peptidases, ISP2. We generated ISP2-null mutants (Δisp2) in T. cruzi Dm28c using CRISPR/Cas9. Epimastigotes of Δisp2 grew normally in vitro but were more susceptible to lysis by human serum compared to parental and ISP2 add-back lines. Tissue culture trypomastigotes of Δisp2 were more infective to human muscle cells in vitro, which was reverted by the serine peptidase inhibitors aprotinin and camostat, suggesting that host cell epitheliasin/TMPRSS2 is the target of ISP2. Pretreatment of host cells with an antagonist to the protease-activated receptor 2 (PAR2) or an inhibitor of Toll-like receptor 4 (TLR4) selectively counteracted the increased cell invasion by Δisp2, but did not affect invasion by parental and add-back lines. The same was observed following targeted gene silencing of PAR2, TLR4 or TMPRSS2 in host cells by siRNA. Furthermore, Δisp2 caused increased tissue edema in a BALB/c mouse footpad infection model after 3 h differently to that observed following infection with parental and add-back lines. We propose that ISP2 contributes to protect T. cruzi from the anti-microbial effects of human serum and to prevent triggering of PAR2 and TLR4 in host cells, resulting in the modulation of host cell invasion and contributing to decrease inflammation during acute infection.


Subject(s)
Chagas Disease , Trypanosoma cruzi , Animals , Mice , Humans , Toll-Like Receptor 4/genetics , Receptor, PAR-2/genetics , Chagas Disease/genetics , Chagas Disease/parasitology , Antiviral Agents/pharmacology , Serine Proteinase Inhibitors/pharmacology , Inflammation , Serine , Serine Endopeptidases/genetics
11.
mBio ; 15(4): e0031924, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38441981

ABSTRACT

Trypanosoma cruzi is the etiologic agent of the most prevalent human parasitic disease in Latin America, Chagas disease. Its genome is rich in multigenic families that code for virulent antigens and are present in the rapidly evolving genomic compartment named Disruptive. DNA replication is a meticulous biological process in which flaws can generate mutations and changes in chromosomal and gene copy numbers. Here, integrating high-throughput and single-molecule analyses, we were able to identify Predominant, Flexible, and Dormant Orc1Cdc6-dependent origins as well as Orc1Cdc6-independent origins. Orc1Cdc6-dependent origins were found in multigenic family loci, while independent origins were found in the Core compartment that contains conserved and hypothetical protein-coding genes, in addition to multigenic families. In addition, we found that Orc1Cdc6 density is related to the firing of origins and that Orc1Cdc6-binding sites within fired origins are depleted of a specific class of nucleosomes that we previously categorized as dynamic. Together, these data suggest that Orc1Cdc6-dependent origins may contribute to the rapid evolution of the Disruptive compartment and, therefore, to the success of T. cruzi infection and that the local epigenome landscape is also involved in this process.IMPORTANCETrypanosoma cruzi, responsible for Chagas disease, affects millions globally, particularly in Latin America. Lack of vaccine or treatment underscores the need for research. Parasite's genome, with virulent antigen-coding multigenic families, resides in the rapidly evolving Disruptive compartment. Study sheds light on the parasite's dynamic DNA replication, discussing the evolution of the Disruptive compartment. Therefore, the findings represent a significant stride in comprehending T. cruzi's biology and the molecular bases that contribute to the success of infection caused by this parasite.


Subject(s)
Chagas Disease , Trypanosoma cruzi , Humans , Trypanosoma cruzi/genetics , Replication Origin , Chagas Disease/parasitology , Gene Dosage , Chromosomes
12.
Front Cell Infect Microbiol ; 14: 1297099, 2024.
Article in English | MEDLINE | ID: mdl-38495650

ABSTRACT

Introduction: Oral transmission of T. cruzi is probably the most frequent transmission mechanism in wild animals. This observation led to the hypothesis that consuming raw or undercooked meat from animals infected with T. cruzi may be responsible for transmitting the infection. Therefore, the general objective of this study was to investigate host-pathogen interactions between the parasite and gastric mucosa and the role of meat consumption from infected animals in the oral transmission of T. cruzi. Methods: Cell infectivity assays were performed on AGS cells in the presence or absence of mucin, and the roles of pepsin and acidic pH were determined. Moreover, groups of five female Balb/c mice were fed with muscle tissue obtained from mice in the acute phase of infection by the clone H510 C8C3hvir of T. cruzi, and the infection of the fed mice was monitored by a parasitemia curve. Similarly, we assessed the infective capacity of T. cruzi trypomastigotes and amastigotes by infecting groups of five mice Balb/c females, which were infected orally using a nasogastric probe, and the infection was monitored by a parasitemia curve. Finally, different trypomastigote and amastigote inoculums were used to determine their infective capacities. Adhesion assays of T. cruzi proteins to AGS stomach cells were performed, and the adhered proteins were detected by western blotting using monoclonal or polyclonal antibodies and by LC-MS/MS and bioinformatics analysis. Results: Trypomastigote migration in the presence of mucin was reduced by approximately 30%, whereas in the presence of mucin and pepsin at pH 3.5, only a small proportion of parasites were able to migrate (∼6%). Similarly, the ability of TCTs to infect AGS cells in the presence of mucin is reduced by approximately 20%. In all cases, 60-100% of the animals were fed meat from mice infected in the acute phase or infected with trypomastigotes or amastigotes developed high parasitemia, and 80% died around day 40 post-infection. The adhesion assay showed that cruzipain is a molecule of trypomastigotes and amastigotes that binds to AGS cells. LC-MS/MS and bioinformatics analysis, also confirmed that transialidase, cysteine proteinases, and gp63 may be involved in TCTs attachment or invasion of human stomach cells because they can potentially interact with different proteins in the human stomach mucosa. In addition, several human gastric mucins have cysteine protease cleavage sites. Discussion: Then, under our experimental conditions, consuming meat from infected animals in the acute phase allows the T. cruzi infection. Similarly, trypomastigotes and amastigotes could infect mice when administered orally, whereas cysteinyl proteinases and trans-sialidase appear to be relevant molecules in this infective process.


Subject(s)
Chagas Disease , Communicable Diseases , Trypanosoma cruzi , Female , Animals , Mice , Humans , Trypanosoma cruzi/metabolism , Pepsin A/metabolism , Parasitemia , Disease Models, Animal , Chromatography, Liquid , Tandem Mass Spectrometry , Chagas Disease/parasitology , Mucins
13.
PLoS Negl Trop Dis ; 18(3): e0012016, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38437237

ABSTRACT

Bolivia has the highest incidence of Chagas disease (CD) worldwide. Caused by the parasite Trypanasoma cruzi, CD is generally a chronic condition. Diagnosis is logistically and financially challenging, requiring at least two different laboratory-based serological tests. Many CD cases are missed; in Bolivia it is estimated just 6% of individuals chronically infected with T. cruzi get diagnosed. Achieving control on the way to elimination of CD requires a radical simplification of the current CD testing pathways, to overcome the barriers to accessing CD treatment. We aimed to generate unbiased performance data of lateral flow assays (LFAs) for T. cruzi infection in Bolivia, to evaluate their usefulness for improving T. cruzi diagnosis rates in a precise and efficient manner. This retrospective, laboratory-based, diagnostic evaluation study sought to estimate the sensitivity/specificity of 10 commercially available LFAs for T. cruzi, using the current CD diagnostic algorithm employed in Bolivia as the reference test method. All tests were blinded at the study site and performed by three operators. In total, 470 serum samples were tested, including 221 and 249 characterized as CD-positive/-negative, respectively. The LFAs were scored according to their relative importance using a decision-tree-based algorithm, with the mean decrease in Gini index as the scoring metric. The estimates of sensitivities ranged from 62.2-97.7% (95% confidence interval (CI) lower bound 55.0-94.7%); for specificities the range was 78.6-100% (95% CI lower bound 72.0-97.5%); 5/10 and 6/10 tests had sensitivity >90% and specificity >95%, respectively. Four LFAs showed high values of both sensitivity (93-95%) and specificity (97-99%). The agreement between 6 LFAs and the reference tests was almost perfect (Kappa 0.83-0.94). Most LFAs evaluated thus showed performances comparable with current laboratory-based diagnostic methods.


Subject(s)
Chagas Disease , Trypanosoma cruzi , Humans , Bolivia , Retrospective Studies , Chagas Disease/parasitology , Sensitivity and Specificity
14.
Front Cell Infect Microbiol ; 14: 1297321, 2024.
Article in English | MEDLINE | ID: mdl-38481660

ABSTRACT

Chagas' is a neglected disease caused by the eukaryotic kinetoplastid parasite, Trypanosoma cruzi. Currently, approximately 8 million people are infected worldwide, most of whom are in the chronic phase of the disease, which involves cardiac, digestive, or neurologic manifestations. There is an urgent need for a vaccine because treatments are only effective in the initial phase of infection, which is generally underdiagnosed. The selection and combination of antigens, adjuvants, and delivery platforms for vaccine formulations should be designed to trigger mixed humoral and cellular immune responses, considering that T. cruzi has a complex life cycle with both intracellular and bloodstream circulating parasite stages in vertebrate hosts. Here, we report the effectiveness of vaccination with a T. cruzi-specific protein family (TcTASV), employing both recombinant proteins with aluminum hydroxide and a recombinant baculovirus displaying a TcTASV antigen at the capsid. Vaccination stimulated immunological responses by producing lytic antibodies and antigen-specific CD4+ and CD8+ IFNÉ£ secreting lymphocytes. More than 90% of vaccinated animals survived after lethal challenges with T. cruzi, whereas all control mice died before 30 days post-infection. Vaccination also induced a strong decrease in chronic tissue parasitism and generated immunological memory that allowed vaccinated and infected animals to control both the reactivation of the infection after immunosuppression and a second challenge with T. cruzi. Interestingly, inoculation with wild-type baculovirus partially protected the mice against T. cruzi. In brief, we demonstrated for the first time that the combination of the baculovirus platform and the TcTASV family provides effective protection against Trypanosoma cruzi, which is a promising vaccine for Chagas disease.


Subject(s)
Chagas Disease , Parasites , Protozoan Vaccines , Trypanosoma cruzi , Vaccines , Humans , Animals , Mice , Baculoviridae/genetics , Antigens, Protozoan/genetics , Chagas Disease/parasitology , Trypanosoma cruzi/genetics , Vaccination , Protozoan Vaccines/genetics
15.
J Mol Diagn ; 26(5): 323-336, 2024 May.
Article in English | MEDLINE | ID: mdl-38360211

ABSTRACT

Trypanosomatids, including Trypanosoma and Leishmania species, present significant medical and veterinary challenges, causing substantial economic losses, health complications, and even fatalities. Diagnosing and genotyping these species and their genotypes is often complex, involving multiple steps. This study aimed to develop an amplicon-based sequencing (ABS) method using Oxford Nanopore long-read sequencing to enhance Trypanosomatid detection and genotyping. The 18S rDNA gene was targeted for its inter-species conservation. The Trypanosomatid-ABS method effectively distinguished between 11 Trypanosoma species (including Trypanosoma evansi, Trypanosoma theileri, Trypanosoma vivax, and Trypanosoma rangeli) and 6 Trypanosoma cruzi discrete typing units (TcI to TcVI and TcBat), showing strong concordance with conventional methods (κ index of 0.729, P < 0.001). It detected co-infections between Trypanosomatid genera and T. cruzi, with a limit of detection of one parasite per mL. The method was successfully applied to human, animal, and triatomine samples. Notably, TcI predominated in chronic Chagas samples, whereas TcII and TcIV were found in the acute stage. Triatomine vectors exhibited diverse Trypanosomatid infections, with Triatoma dimidiata mainly infected with TcI and occasional TcBat co-infections, and Rhodnius prolixus showing TcI and TcII infections, along with T. rangeli co-infections and mixed TcII infections. Animals were infected with T. vivax, T. theileri, and T. evansi. The ABS method's high resolution, sensitivity, and accuracy make it a valuable tool for understanding Trypanosomatid dynamics, enhancing disease control strategies, and enabling targeted interventions.


Subject(s)
Chagas Disease , Coinfection , Nanopore Sequencing , Trypanosoma cruzi , Humans , Animals , Genotype , RNA, Ribosomal, 18S/genetics , Chagas Disease/parasitology , Trypanosoma cruzi/genetics
16.
Sci Rep ; 14(1): 5000, 2024 02 29.
Article in English | MEDLINE | ID: mdl-38424216

ABSTRACT

Trypanosoma cruzi is the protozoan that causes Chagas disease (CD), an endemic parasitosis in Latin America distributed around the globe. If CD is not treated in acute phase, the parasite remains silent for years in the host's tissues in a chronic form, which may progress to cardiac, digestive or neurological manifestations. Recently, studies indicated that the gastrointestinal tract represents an important reservoir for T. cruzi in the chronic phase. During interaction T. cruzi and host cells release extracellular vesicles (EVs) that modulates the immune system and infection, but the dynamics of secretion of host and parasite molecules through these EVs is not understood. Now, we used two cell lines: mouse myoblast cell line C2C12, and human intestinal epithelial cell line Caco-2to simulate the environments found by the parasite in the host. We isolated large EVs (LEVs) from the interaction of T. cruzi CL Brener and Dm28c/C2C12 and Caco-2 cells upon 2 and 24 h of infection. Our data showed that at two hours there is a strong cellular response mediated by EVs, both in the number, variety and enrichment/targeting of proteins found in LEVs for diverse functions. Qualitative and quantitative analysis showed that proteins exported in LEVs of C2C12 and Caco-2 have different patterns. We found a predominance of host proteins at early infection. The parasite-host cell interaction induces a switch in the functionality of proteins carried by LEVs and a heterogeneous response depending on the tissues analyzed. Protein-protein interaction analysis showed that cytoplasmic and mitochondrial homologues of the same parasite protein, tryparedoxin peroxidase, were differentially packaged in LEVs, also impacting the interacting molecule of this protein in the host. These data provide new evidence that the interaction with T. cruzi leads to a rapid tissue response through the release of LEVs, reflecting the enrichment of some proteins that could modulate the infection environment.


Subject(s)
Chagas Disease , Extracellular Vesicles , Trypanosoma cruzi , Animals , Mice , Humans , Trypanosoma cruzi/metabolism , Caco-2 Cells , Chagas Disease/parasitology , Extracellular Vesicles/metabolism , Host-Parasite Interactions
17.
Infect Genet Evol ; 118: 105563, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38301855

ABSTRACT

Bats have a long evolutionary history with trypanosomatids, but the role of these flying mammals on parasite transmission cycles in urban areas, especially for Trypanosoma and Leishmania species, remains poorly known. The objective of this study was to evaluate the species richness of trypanosomatids parasitizing a bat community in Campo Grande (CG), a state capital within the Cerrado of the Brazilian Midwest. We evaluated 237 bats of 13 species by means of hemoculture and molecular detection in spleen samples. The bat community of CG appears to participate in the transmission cycles of various species of trypanosomatids. We report an overall trypanosomatid detection rate of 34.2% (n = 81), involving 11 out of 13 sampled bat species. We identified six species of trypanosomatids from 61 bats by analyzing SSU rRNA and/or kDNA: Trypanosoma cruzi DTU TcI, T. c. marinkellei, T. dionisii, Leishmania infantum, L. amazonensis, and T. janseni, with this latter being detected by hemoculture for the first time in a bat species. We also detected a Molecular Operational Taxonomic Unit, Trypanosoma sp. DID, in the phyllostomids Glossophaga soricina and Platyrrhinus lineatus. The highest trypanosomatid richness was observed for Sturnira lilium, which hosted three species: L. infantum, T. dionisii and T. janseni. Given that visceral leishmaniasis is endemic in CG, special focus should be placed on L. infantum. Moreover, L. amazonensis and T. cruzi warrant attention, since these are zoonotic parasites responsible for human cases of tegumentary leishmaniasis and Chagas disease, respectively. In this respect, we discuss how bat communities may influence the Leishmania spp. transmission in endemic areas.


Subject(s)
Chagas Disease , Chiroptera , Leishmania infantum , Trypanosoma cruzi , Animals , Humans , Chiroptera/parasitology , Brazil/epidemiology , Trypanosoma cruzi/genetics , Chagas Disease/epidemiology , Chagas Disease/veterinary , Chagas Disease/parasitology , Mammals
18.
PLoS Negl Trop Dis ; 18(2): e0011961, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38408095

ABSTRACT

BACKGROUND: Trypanosoma cruzi and HIV coinfection can evolve with depression of cellular immunity and increased parasitemia. We applied quantitative PCR (qPCR) as a marker for preemptive antiparasitic treatment to avoid fatal Chagas disease reactivation and analyzed the outcome of treated cases. METHODOLOGY: This mixed cross-sectional and longitudinal study included 171 Chagas disease patients, 60 coinfected with HIV. Of these 60 patients, ten showed Chagas disease reactivation, confirmed by parasites identified in the blood, cerebrospinal fluid, or tissues, 12 exhibited high parasitemia without reactivation, and 38 had low parasitemia and no reactivation. RESULTS: We showed, for the first time, the success of the timely introduction of benznidazole in the non-reactivated group with high levels of parasitemia detected by qPCR and the absence of parasites in reactivated cases with at least 58 days of benznidazole. All HIV+ patients with or without reactivation had a 4.0-5.1 higher chance of having parasitemia than HIV seronegative cases. A positive correlation was found between parasites and viral loads. Remarkably, treated T. cruzi/HIV-coinfected patients had 77.3% conversion from positive to negative parasitemia compared to 19.1% of untreated patients. Additionally, untreated patients showed ~13.6 times higher Odds Ratio of having positive parasitemia in the follow-up period compared with treated patients. Treated and untreated patients showed no differences regarding the evolution of Chagas disease. The main factors associated with all-cause mortality were higher parasitemia, lower CD4 counts/µL, higher viral load, and absence of antiretroviral therapy. CONCLUSION: We recommend qPCR prospective monitoring of T. cruzi parasitemia in HIV+ coinfected patients and point out the value of pre-emptive therapy for those with high parasitemia. In parallel, early antiretroviral therapy introduction is advisable, aiming at viral load control, immune response restoration, and increasing survival. We also suggest an early antiparasitic treatment for all coinfected patients, followed by effectiveness analysis alongside antiretroviral therapy.


Subject(s)
Chagas Disease , Coinfection , HIV Infections , Nitroimidazoles , Trypanosoma cruzi , Humans , Trypanosoma cruzi/genetics , Parasitemia/drug therapy , Parasitemia/parasitology , Longitudinal Studies , Cross-Sectional Studies , Prospective Studies , Chagas Disease/complications , Chagas Disease/drug therapy , Chagas Disease/parasitology , Nitroimidazoles/therapeutic use , HIV Infections/complications , HIV Infections/drug therapy , Polymerase Chain Reaction , Antiparasitic Agents/therapeutic use , Coinfection/parasitology
19.
Emerg Microbes Infect ; 13(1): 2315964, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38381980

ABSTRACT

Chagas Disease is an important neglected tropical disease caused by Trypanosoma cruzi. There is no gold standard for diagnosis and commercial serological tests perform poorly in certain locations. By aligning T. cruzi genomes covering parasite genetic and geographic diversity, we identified highly conserved proteins that could serve as universal antigens for improved diagnosis. Their antigenicity was tested in high-density peptide microarrays using well-characterized plasma samples, including samples presenting true infections but discordant serology. Individual and combination of epitopes were also evaluated in peptide-ELISAs. We identified >1400 highly conserved T. cruzi proteins evaluated in microarrays. Remarkably, T. cruzi positive controls had a different epitope recognition profile compared to serologically discordant samples. In particular, multiple T. cruzi antigens used in current tests and their strain-variants, and novel epitopes thought to be broadly antigenic failed to be recognized by discordant samples. Nonetheless, >2000 epitopes specifically recognized by IgGs from both positive controls and discordant samples were identified. Evaluation of selected peptides in ELISA further illustrated the extensive variation in antibody profiles among subjects and a peptide combination could outperform a commercial ELISA, increasing assay sensitivity from 52.3% to 72.7%. Individual variation in antibody profiles rather than T. cruzi diversity appears to be the main factor driving differences in serological diagnostic performance according to geography, which will be important to further elucidate. ELISA with a combination of peptides recognized by a greater number of individuals could better capture infections, and further development may lead to an optimal antigen mixture for a universal diagnostic assay.


Subject(s)
Chagas Disease , Trypanosoma cruzi , Humans , Trypanosoma cruzi/genetics , Trypanosoma cruzi/chemistry , Antigens, Protozoan/genetics , Chagas Disease/diagnosis , Chagas Disease/parasitology , Epitopes/genetics , Enzyme-Linked Immunosorbent Assay , Peptides
20.
PLoS Negl Trop Dis ; 18(2): e0011937, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38306403

ABSTRACT

Chagas disease, caused by the protozoan parasite Trypanosoma cruzi transmitted by blood-sucking insects of the subfamily Triatominae, is a major neglected tropical disease affecting 6 to 7 million of people worldwide. Rhodnius prolixus, one of the most important vectors of Chagas disease in Latin America, is known to be highly sensitive to environmental factors, including temperature. This study aimed to investigate the effects of different temperatures on R. prolixus development and life-cycle, its relationship with T. cruzi, and to gather information about the nutritional habits and energy consumption of R. prolixus. We exposed uninfected and infected R. prolixus to four different temperatures ranging from 24°C to 30°C, and monitored their survival, developmental rate, body and blood meal masses, urine production, and the temporal dynamics of parasite concentration in the excreted urine of the triatomines over the course of their development. Our results demonstrate that temperature significantly impacts R. prolixus development, life-cycle and their relationship with T. cruzi, as R. prolixus exposed to higher temperatures had a shorter developmental time and a higher mortality rate compared to those exposed to lower temperatures, as well as a lower ability to retain weight between blood meals. Infection also decreased the capacity of the triatomines to retain weight gained by blood-feeding to the next developmental stage, and this effect was proportional to parasite concentration in excreted urine. We also showed that T. cruzi multiplication varied depending on temperature, with the lowest temperature having the lowest parasite load. Our findings provide important insights into the potential impact of climate change on the epidemiology of Chagas disease, and can contribute to efforts to model the future distribution of this disease. Our study also raises new questions, highlighting the need for further research in order to understand the complex interactions between temperature, vector biology, and parasite transmission.


Subject(s)
Chagas Disease , Rhodnius , Trypanosoma cruzi , Humans , Animals , Rhodnius/parasitology , Temperature , Insect Vectors/parasitology , Chagas Disease/parasitology , Life Cycle Stages , Parasite Load
SELECTION OF CITATIONS
SEARCH DETAIL
...